Skip to main content

Dementia

Alzheimer's Disease & other dementias

Alzheimer's Disease

Alzheimer's disease currently affects one in 10 people over age 65 and nearly half of those over age 85.

More than 19 million Americans say they have a family member with the disease, and 37 million say they know somebody affected with Alzheimer's.

In the United States, the average lifetime cost per Alzheimer patient is US$174,000. (These figures are from the U.S. Alzheimer's Association).

Resources:

The Alzheimer Research Forum: "A scientific knowledge base on Alzheimer disease, with research news, expert commentaries, and databases for peer-reviewed articles, drugs, research reagents, grants, jobs, conferences, and more."
www.alzforum.org

Cognitive Neurology and Alzheimer's Disease Center at Northwestern University
https://www.brain.northwestern.edu/dementia/ad/index.html

Medline Plus
https://medlineplus.gov/alzheimersdisease.html

Links to national organizations that offer support:

http://www.alz.org/ Site of the U.S. Alzheimer’s Association.

http://www.alzheimers.org.uk/ Site of the U.K. Alzheimer's Society

http://www.alzheimer.ca/ Site of the Canadian Alzheimer's Association

https://www.dementia.org.au/ Site of Dementia Australia

www.alzheimers.org.nz Site of Alzheimer's New Zealand

Some articles of interest:

Movement with Meaning

Walking speed, cognitive impairment, and what to do about it

I have previously reported on how gait and balance problems have been associated with white matter lesions, and walking speed and grip strength have been associated with dementia and stroke risk. Another recent study, involving 93 older adults (70+) has added to this evidence, with the finding that those with non-amnestic MCI were much more likely to be slow walkers.

The study involved 54 seniors with no cognitive impairment, 31 with non-amnestic MCI and eight with amnestic MCI. Passive infrared sensors fixed in series on the ceilings of participants’ homes enabled their walking speed to be monitored unobtrusively over a three-year period.

Those with non-amnestic MCI were nine times more likely to be slow walkers than moderate or fast walkers, and more likely to show greater variability in walking speed.

Unfortunately, I have not been able to read the full paper (which is why I’m not reporting this in news), so I can’t tell you any more details. I assume that the main reason for the failure to find a significant difference in the amnestic MCI group was because that group was so small, but I don’t know.

Nevertheless, the study does add to the growing evidence of an association between gait and balance problems and risk of cognitive impairment and dementia, which is why I was interested to read a recent paper on entraining walking using a metronomic beat.

The paper spoke about the use of sensory cues in neurological rehabilitation. Specifically, auditory cues have been shown to help various gait characteristics of patients with Parkinson's disease and stroke. In patients with Parkinson’s, visual cues also improved stride length, while auditory cues improved cadence.

So here’s the question: if you are having gait and/or balance problems, will improving them also reduce your risk of developing cognitive problems? Or are the physical problems merely the consequence of physical deterioration in the brain that also lead to cognitive problems?

I’ve raised the same question before in relation to sensory deterioration. My answer then is the same answer I give now: you shouldn’t ignore these physical problems as something that is simply inevitable with age and/or poor health. As with sensory impairment, there are two ways in which restricted physical movement might impact your cognition.

One is the physical damage in the brain I have spoken of. Whether or not you can reverse some of this damage (or at least counteract it by developing some other area of the brain) by improving gait, balance, or grip strength, is a question as yet unanswered. But it is possible, and for that reason should be tried.

The other way is through the effect of restricted physical movement on your activities, and your state of mind. Research suggests that restricting your environment is a risk factor in developing cognitive impairment. Similarly, social engagement and cognitively-stimulating activities are both important for preventing cognitive decline, and while physical frailty doesn’t necessarily limit these, it does make it much more likely that they will be restricted.

State of mind is associated with attitude, and I have spoken before (often!) about the effect of this on cognition. If you believe that life is ‘over’ for you, that you are sliding rapidly down the hill and there is nothing you can do about it, then your belief will make that true. Physical frailty is, understandably, going to make that belief more likely. Contrariwise, if you succeed in reducing your frailty, in being able once again to do some tasks that you thought you would never be able to do again, then you are much more likely to take action in fighting cognitive decline.

So, it’s worth tackling walking problems — and worth making your best efforts to ensure that they don’t happen, by keeping fit and active. The use of sensory cues to help gait problems probably requires some specialist assistance. Another approach is by practicing tai ch’i, which is generally recommended as an activity for improving balance.

Total Cognitive Burden

Because it holds some personal resonance for me, my recent round-up of genetic news called to mind food allergies. Now food allergies can be tricky beasts to diagnose, and the reason is, they’re interactive. Maybe you can eat a food one day and everything’s fine; another day, you break out in hives. This is not simply a matter of the amount you have eaten, the situation is more complex than that. It’s a function of what we might call total allergic load — all the things you might be sensitive to (some of which you may not realize, because on their own, in the quantities you normally consume, they’re no or little problem). And then there are other factors which make you more sensitive, such as time of month (for women), and time of day. Perhaps, in light of the recent findings about the effects of environmental temperature on multiple sclerosis, temperature is another of those factors. And so on.

Now, I am not a medical doctor, nor a neuroscientist. I’m a cognitive psychologist who has spent the last 20 years reading and writing about memory. But I have taken a very broad interest in memory and cognition, and the picture I see developing is that age-related cognitive decline, mild cognitive impairment, late-onset Alzheimer’s, and early-onset Alzheimer’s, represent places on a continuum. The situation does not seem as simple as saying that these all have the same cause, because it now seems evident that there are multiple causes of dementia and cognitive impairment. I think we should start talking about Total Cognitive Burden.

Total Cognitive Burden would include genetics, lifestyle and environmental factors, childhood experience, and prenatal factors.

First, genetics.

It is estimated that around a quarter of Alzheimer’s cases are familial, that is, they are directly linked to the possession of specific gene mutations. For the other 75%, genes are likely to be a factor but so are lifestyle and environmental factors. Having said that, the most recent findings suggest that the distinction between familial and sporadic is somewhat fuzzy, so perhaps it would be fairer to say we term it familial when genetics are the principal cause, and sporadic when lifestyle and environmental factors are at least as important.

While three genes have been clearly linked to early-onset Alzheimer’s, only one gene is an established factor in late-onset Alzheimer’s — the so-called Alzheimer’s gene, the e4 allele on the APOE gene (at 19q13.2). It’s estimated that 40-65% of Alzheimer’s patients have at least one copy of this allele, and those with two copies have up to 20 times the risk of developing Alzheimer’s. Nevertheless, it is perfectly possible to have this allele, even two copies of it, and not develop the disease. It is also quite possible — and indeed a third of Alzheimer’s patients have managed it — to develop Alzheimer’s in the absence of this risky gene variant.

A recent review selected 15 genes for which there is sufficient evidence to associate them with Alzheimer’s: APOE, CLU, PICALM, EXOC3L2, BIN1, CR1, SORL1, TNK1, IL8, LDLR, CST3, CHRNB2, SORCS1, TNF, and CCR2. Most of these are directly implicated in cholesterol metabolism, intracellular transport of beta-amyloid precursor, and autophagy of damaged organelles, and indirectly in inflammatory response.

For example, five of these genes (APOE; LDLR; SORL1; CLU; TNF) are implicated in lipid metabolism (four in cholesterol metabolism). This is consistent with evidence that high cholesterol levels in midlife is a risk factor for developing Alzheimer’s. Cholesterol plays a key role in regulating amyloid-beta and its development into toxic oligomers.

Five genes (PICALM; SORL1; APOE; BIN1; LDLR) appear to be involved in the intracellular transport of APP, directly influencing whether the precursor proteins develop properly.

Seven genes (TNF; IL8; CR1; CLU; CCR2; PICALM; CHRNB2) were found to interfere with the immune system, increasing inflammation in the brain.

If you’re interested you can read more each of these genes in that review, but the point I want to make is that genes can’t be considered alone. They interact with each other, and they interact with other factors (for example, there is some evidence that SORL1 is a risk factor for women only; if you have always kept your cholesterol levels low, through diet and/or drugs, having genes that poorly manage cholesterol will not be so much of an issue). It seems reasonable to assume that the particular nature of an individual’s pathway to Alzheimer’s will be determined by the precise collection of variants on several genes; this will also help determine how soon and how fast the Alzheimer’s develops.

[I say ‘Alzheimer’s’, but Alzheimer’s is not, of course, the only path to dementia, and vascular dementia in particular is closely associated. Moreover, my focus on Alzheimer’s isn’t meant to limit the discussion. When I talk about the pathway to dementia, I am thinking about all these points on the continuum: age-related cognitive decline, mild cognitive impairment, senile dementia, and early dementia.]

It also seems plausible to suggest that the precise collection of relevant genes will determine not only which drug and neurological treatments might be most effective, but also which lifestyle and environmental factors are most important in preventing the development of the disease.

I have reported often on lifestyle factors that affect cognitive decline and dementia — factors such as diet, exercise, intellectual and social engagement — factors that may mediate risk through their effects on cardiovascular health, diabetes, inflammation, and cognitive reserve. We are only beginning to understand how childhood and prenatal environment might also have effects on cognitive health many decades later — for example, through their effects on head size and brain development.

You cannot do anything about your genes, but genes are not destiny. You cannot, now, do anything about your prenatal environment or your early years (but you may be able to do something about your children’s or your grandchildren’s). But you can, perhaps, be aware of whether you have vulnerabilities in these areas — vulnerabilities which will add to your Total Cognitive Burden. More easily, you can assess your lifestyle — over the course of your life — in these terms. Here are the sorts of questions you might ask yourself:

Do you have any health issues such as diabetes, cardiovascular disease, multiple sclerosis, positive HIV status?

Do you have a sleep disorder?

Have you, at any point in your life, been exposed to toxic elements (such as lead or severe air pollution) for a significant length of time?

Did you experience a lot of stress in childhood? Stress might come from a dangerous living environment (such as a violent neighborhood), warring parents, a dysfunctional parent, or a personally traumatic event (to take some examples).

Did you do a lot of drugs, or indulge in binge drinking, in college?

Have you spent many years eating an unhealthy diet — one heavy in fats and sugars?

Do you drink heavily?

Do you have ongoing stress in your life, or have experienced significant amounts of stress at some period during middle-age?

Do you rarely engage in exercise?

Do you spend most evenings blobbed out in front of the TV?

Do you experience little in the way of mental stimulation from your occupation or hobbies?

These questions are just off the top of my head, the ones that came most readily to mind. But they give you, I hope, some idea of the range of factors that might go to make up your TCB. The next step from there is to see what factors you can do something about. While you can’t do anything about your past, the good news is that, at any age, some benefit accrues from engaging in preventative strategies (such as improving your sleeping, reducing your stress, eating healthily, exercising regularly, engaging in mentally and socially stimulating activities). How much benefit will depend on how much effort you put into these preventative strategies, and on which and how many TCB factors are pushing you and how far you are along on the path. But it’s never too late to do something.

On the up-side, you might be relieved by such an exercise, realizing that your risk of dementia is smaller than you feared! If so, you might use this knowledge to motivate you to aspire to an excellent old age — with no cognitive decline. We tend to assume that declining faculties are an inevitable consequence of getting older, but this doesn’t have to be true. Some ‘super-agers’ have shown us that it is possible to grow very old and still perform as well as those decades younger. If your TCB is low, why don’t you make it even lower, and aspire to be one of those!

Preventing dementia: Diet & exercise

It's increasingly clear that eating a healthy diet can have a big impact on whether or not you develop dementia.

A study1 of nearly 2000 older adults has found that eating a Mediterranean diet was associated with less risk of developing mild cognitive impairment or of transitioning from MCI to Alzheimer's disease. The third with the highest scores for Mediterranean diet adherence had a 28% lower risk of developing MCI compared to the third with the lowest scores, and of those who already had MCI, those with the highest scores for Mediterranean diet adherence had a 48% less chance of developing Alzheimer’s.

Another, similar-sized study2, has found that those who adhered more strongly to a Mediterranean-type diet had a 40% risk reduction, and those who were very physically active had a 33% risk reduction of Alzheimer's -- doing both gave people a 60% reduction.

A Mediterranean-type diet is typically characterized by high intake of fish, vegetables, legumes, fruits, cereals and monounsaturated fatty acids; relatively low intake of dairy products, meats and saturated fats; and moderate alcohol consumption. Most of these components have been independently associated with reduced dementia risk. Let's look at them one by one.

Fruit & vegetables

A very large study3 of older adults found that those who ate fruits and vegetables daily reduced their risk of dementia by 30% compared to those who didn’t regularly eat fruits and vegetables. Another large, long-running epidemiological study4 found that those who drank three or more servings of fruit and vegetable juices per week had a 76% lower risk of developing Alzheimer’s disease than those who drank juice less than once a week. The benefit seemed greatest for those who carried the so-called “Alzheimer’s gene”.

This may not have anything to do with vitamin C. A five-year study5 involving nearly 3000 people has found that use of Vitamin C or E or both was not associated with a reduced risk of developing dementia or Alzheimer’s. However a study6 involving 4,740 elderly found the greatest reduction in both prevalence and incidence of Alzheimer's in those who used individual vitamin E and C supplements in combination. There was no significant benefit in these vitamins alone.

Of course, it is now well understood that taking vitamins as supplements is not the same as receiving them in food.

Two studies have come out in favor of a diet rich in foods containing vitamin E to help protect against Alzheimer's disease. One study7 involved 815 Chicago residents age 65 and older with no initial symptoms of mental decline, who were questioned about their eating habits and followed for an average of about four years. When factors like age and education were taken into account, those eating the most vitamin E-rich foods had a lower risk of developing Alzheimer’s, provided they did not have the ApoE e4 allele. This was not true when vitamin E was taken as a supplement. The effect of vitamin C was not statistically significant.

The other study8 involved 5,395 people in the Netherlands age 55 and older who were followed for an average of six years. Those with high intakes of vitamins E and C were less likely to become afflicted with Alzheimer's, regardless of whether they had the gene variation. This association was most pronounced for current smokers.

So beneficial effects of these vitamins may depend on genetics, smoking history, and possibly other lifestyle factors. But there are other valuable compounds common in fruits & vegetables. Another class of antioxidant chemicals, polyphenols, are now suspected. Polyphenols generally exist primarily in the skins of fruits and vegetables and are particularly abundant in teas, juices and wines.

A cell study9 also found that quercetin (a flavonoid with greater antioxidant and anticancer properties than vitamin C) protects against cellular damage. Quercetin is particularly abundant in apples (mainly in the skin, and especially the red ones). Other good sources are onions, blueberries and cranberries.

Another cell study10 found that compounds in blackcurrants (anthocyanins as well as polyphenols) strongly protect neuronal cells against the effects of amyloid-beta. Boysenberries contain the same compounds, and those that are darker are likely to be more potent.

The inconsistent findings regarding vitamins C and E may also have to do with the presence of folates. Data from the Baltimore Longitudinal Study of Aging11 revealed that although those with higher intake of folates, vitamin E and vitamin B6 had a lower risk of developing Alzheimer’s, statistical analysis showed it was only folate consumption that was significant. Those who had at least 400mcg of folates a day (the recommended daily allowance) had a 55% reduction in risk of developing Alzheimer’s. Unfortunately, most people who reached that level did so by taking supplements, suggesting the difficulty of doing so through diet alone.

Folates are abundant in foods such as liver, kidneys, yeast, fruits (like bananas and oranges), leafy vegetables, whole-wheat bread, lima beans, eggs and milk; however, they are often destroyed by cooking or processing.

The benefits of folates probably has to do with its effect on homocysteine. A mouse study12 indicates that increased levels of homocysteine are produced by low intake of folate and B vitamins, and impair cognition through microvascular changes. 

High levels of homocysteine are associated not only with deficiencies in vitamin B12 and folate, but also with smoking.

High levels of homocysteine were associated in one study13 with a more than five-fold increase in the risk for stroke, a nearly five-fold risk for vascular dementia, and almost triple the risk for Alzheimer's disease. Findings from the long-running Framingham study14 found people with elevated levels of homocysteine in the blood had nearly double the risk of later developing Alzheimer’s disease.

Moreover, evidence from a study15 using genetically engineered mice suggests that increased levels of homocysteine in the brain cause damage to nerve cells in the hippocampus -- which can be repaired when there is an adequate amount of folate, but not when there is a deficiency.

Omega-3 oils & fish

One of the clearest findings in this area has been the benefits of regularly consuming omega-3 oils, fish oil, and fish. Several epidemiological studies have indicated that regularly eating fish (at least once a week) reduces risk of dementia. More recently, two very large studies have come out in support. One very large study3 of older adults found that those who regularly consumed omega-3 rich oils, such as canola oil, flaxseed oil and walnut oil, reduced their risk of dementia by 60% compared to people who did not regularly consume such oils. Additionally, those who ate fish at least once a week had a 40% lower risk of dementia -- but only if they did not carry ApoE4 gene.

Moreover, for those who didn’t have the gene, regular use of omega-6 rich oils, but not omega-3 rich oils or fish, were twice as likely to develop dementia compared to those who didn’t eat omega-6 rich oils (e.g., sunflower or grape seed oil).

The second study16 comes from the famous long-running Framingham Heart Study, which found that those with the highest levels of DHA (an omega-3 polyunsaturated fatty acid found in relatively high concentrations in cold-water fish) had a 47% lower risk of developing dementia. Those with these levels tended to eat an average three fish servings a week, as well as an average of .18 grams of DHA a day. Those at lower levels ate markedly less fish.

There is also some suggestion that omega-3 oils might help slow the progression of dementia. A Swedish study17 found that, although fatty acids DHA and EPA didn't slow cognitive decline in those with mild-to-moderate Alzheimer’s, they did slow decline in those with very mild cognitive impairment (a frequent precursor of dementia). It's been suggested that anti-inflammatory effects are an important reason for the benefit, why might explain why benefits only occur in the very early stages, when levels of inflammation seem to be higher.

Similar results were more recently reported18 from a large 18-month trial. This one, however, suggested that genetic status might be a factor -- that those without the “Alzheimer’s gene” ApoE4 might benefit even if impairment had progressed to mild-to-moderate Alzheimer’s.

There are a number of reasons why DHA might help brains.

A study involving genetically engineered mice19 has found that a diet high in DHA dramatically slowed the progression of Alzheimer's by cutting the harmful brain plaques that mark the disease. An earlier study20 showed that DHA protected against damage to the synaptic areas where brain cells communicate and enabled mice to perform better on memory tests. More recent research21 has revealed that DHA increases the production of LR11, a protein that is found at reduced levels in Alzheimer's patients and which is known to destroy the protein that forms the plaques associated with the disease.

Food sources of omega-3 fatty acids include fish such as salmon, halibut, mackerel and sardines, as well as almonds, walnuts, soy, flaxseed, and DHA-enriched eggs. These fish have high levels of DHA because they consume DHA-rich algae. Because these fishes' oiliness makes them absorb more mercury, dioxin, PCP and other metals, a less risky yet more costly strategy is to consume fish oil or purified DHA supplements made from algae.

Possible benefits of wine, tea, and coffee

There have been a number of reports that moderate alcohol consumption (generally defined as 1 drink or less per day for women and 1-2 drinks or less per day for men) may help reduce your risk of developing dementia, and a 2008 review of 44 studies22 supported this conclusion. 

However, given that alcohol has known negative effects on the brain, no one is recommending that non-drinkers take up the habit! All one can say is that there's no reason to alter your habits if you are a moderate drinker. On the other hand, if you drink more than this, you are probably best to knock it back to this level.

However, the evidence suggests that it is wine rather than alcohol in general that is beneficial for the brain. A large Danish study23 found that those who drank wine occasionally in the 1970s had a lower risk of developing dementia in the 1990s (when participants were 65 or older). However, occasional beer drinking was associated with an increased risk of developing dementia. But we cannot draw too hard & fast a conclusion from this, as eating habits were not investigated, and research suggests that wine drinkers may have better dietary habits than beer and liquor drinkers. Moreover, a very large study of older adults3, that found a significant effect of some dietary factors, found no effect of wine.

There are, however, some good reasons for believing regular drinking of red wine may help the aging brain. Red grapes contain several polyphenols that have been shown to significantly reduce cognitive deterioration in genetically engineered mice, by preventing the formation of amyloid beta. One of these is resveratrol; the others are catechin and epicatechin. Resveratrol was much vaunted when its effects were first discovered, but unfortunately it requires extremely high doses. The more recent discovery24 of the catechins is much more exciting, as they appear to be effective at much lower doses. The catechins are also abundant in tea and cocoa.

Tea, most particularly green tea, has also been found25 to inhibit the activity of enzymes associated with the development of Alzheimer's Disease. Green tea also obstructed the activity of beta-secretase.

These inhibitory properties were not found in coffee. However, a large, long-running Finnish study26 has found that those who were coffee drinkers at midlife had lower risk for dementia and Alzheimer’s later in life compared to those drinking no or only little coffee midlife. The lowest risk was found among moderate coffee drinkers (drinking 3-5 cups of coffee/day).

Restricting your calories

There has been some talk that calorie-restricted diets might help prevent Alzheimer's. So far, the only indications have come from experiments with genetically engineered mice. While there have been a number of studies providing evidence that high cholesterol, obesity, and other cardiovascular risk factors increase the likelihood of Alzheimer’s, it is decidedly premature to say whether calorie-restricted diets would benefit humans. Particularly since one of the early signs of Alzheimer's is weight loss. So it is certainly not recommended that people severely restrict their diets. More useful is removing certain food types (e.g., the "bad" oils; sugar -- there is some evidence that Alzheimer's may be a type of diabetes), and increasing consumption of others (fish, "good" oils, fruit & vegetables).

There may also be a genetic link. A four-year study27 of nearly 1000 older adults found that among those who carried the ApoE e4 gene, those who consumed the most calories had a 2.3 times greater chance of developing Alzheimer’s compared to those who ate the fewest calories. But calories weren't a factor for those without the gene.

Cholesterol

A study28 involving nearly 10,000 people who underwent health evaluations between 1964 and 1973 when they were between the ages of 40 and 45, has found that those with total cholesterol levels between 249 and 500 milligrams were one-and-a-half times more likely to develop Alzheimer's disease than those people with cholesterol levels of less than 198 milligrams. People with total cholesterol levels of 221 to 248 milligrams were more than one-and-a-quarter times more likely to develop Alzheimer's disease. High cholesterol increased risk regardless of midlife diabetes, high blood pressure, obesity, smoking and late-life stroke.

A review29 of autopsy cases of patients over 40 years old found that high blood cholesterol levels were correlated with the presence of amyloid deposits in the brain in the youngest subjects (aged 40-55).

An analysis30 of data on 1037 older women who had participated in a clinical trial of hormone replacement therapy found that high cholesterol levels increase the risk of cognitive impairment.

A large-scale Finnish study31 following 1449 men and women over 21 years found that raised systolic blood pressure and high serum cholesterol concentration, particularly in combination, in midlife, increase the risk of Alzheimer's disease in later life. Raised diastolic blood pressure had no significant effect.

However, the long-running, large-scale Framingham Heart study32 found that, after adjustment for age, sex, APOE genotype, smoking, body mass index, coronary heart disease, and diabetes, there was no significant association between AD risk and cholesterol level.

Previous studies suggesting that fat may be involved in the development of dementia and Alzheimer’s disease have been contradicted by a new study33 involving over 5,000 elderly people over a period of six years. The study found no correlation between fat and cholesterol intake and risk of dementia, and no evidence for a reduction in risk for those taking cholesterol lowering medication.

A cell study34 provides more understanding of why there might be a link between cholesterol and Alzheimer's disease. The study found that proteins which help control cholesterol levels in arterial walls were also present in neurons, and when the genes for these proteins were over-expressed, production of amyloid beta protein fell. The finding suggests a new approach to slowing Alzheimer’s. The study also showed that the apoE protein is extremely good at regulating cholesterol removal from neurons — the gene for this protein is a well-known genetic risk factor for Alzheimer's.

Diabetes

A large Swedish study35 has found that men with low insulin secretion capacity at age 50 were nearly one-and-a-half times more likely to develop Alzheimer’s disease than men without insulin problems. The risk was strongest in those who didn't have the APOE4 gene. Another large study36 found that diabetes was related to a significantly higher risk of developing amnestic mild cognitive impairment in older seniors (average age 76), after controlling for other risk factors. And a large study37 of post-menopausal women (mean age 67 years) found that those with poor blood sugar control were four times more likely to develop MCI or dementia. Findings38 from the long-running Religious Orders Study also support a link between diabetes and an increased risk of developing Alzheimer's disease.

Evidence from a mouse study39 suggests that diabetes might increase risk because elevated blood glucose levels interact with beta amyloid in a way damaging to blood vessels in the brain. In fact it has been suggested that Alzheimer’s could be considered a third form of diabetes. Another study40 provides evidence that amyloid oligomers remove insulin receptors from nerve cells, rendering those neurons insulin resistant. Another mouse study41 suggests that low levels of insulysin, an enzyme that degrades insulin, are a factor. The enzyme, it seems, also degrades amyloid-beta peptides, and even a partial decrease in insulysin activity was found to raise amyloid-beta peptide levels in the brain.

Obesity

A review42 of 10 international studies published since 1995, covering just over 37,000 people, has found that obesity increased the relative risk of dementia by an average of 42% compared with normal weight. Being underweight increased the risk by 36%. For Alzheimer's Disease and vascular dementia, specifically, obesity was an even more significant risk: 80% and 73%, respectively. With regards to Alzheimer’s, obesity was more likely to be a risk factor for women, but men were more affected when it came to vascular dementia.

A very large study43 that measured abdominal fat at age 40 to 45 and dementia occurrence some 36 years later, found that those with the highest amount of abdominal fat were nearly three times more likely to develop dementia than those with the lowest amount of abdominal fat. Having a large abdomen increased the risk of dementia regardless of overall weight and existing health conditions, although being obese as well did increase the risk. Those more likely to have abdominal obesity, were women, non-whites, smokers, people with high blood pressure, high cholesterol or diabetes, and those with less than a high school level of education. And another large study44 found that those who at 40 were obese, or had high blood pressure, or high cholesterol levels, were twice as more likely to develop dementia by the age of 60. Having all three of these risk factors increased their chances six-fold.

And just to be really scary, when45 genetically engineered mice were fed a diet rich in fat, sugar and cholesterol for a mere nine months (although that is, of course, much longer for a mouse than it is for us!), they developed a preliminary stage of Alzheimer's pathology in their brains, suggesting that a ‘fast food’ diet could be a contributory factor in those with the Alzheimer’s gene.

Physical exercise & fitness

A number of studies have found that physical fitness reduces the risk of dementia. One way physical exercise can help fight dementia is through its ability to grow neurons in the hippocampus. This is well-established in rodent studies, and has been confirmed in small human studies. One such study46 found the association between physical fitness and hippocampus size was specifically associated with performance on certain spatial memory tests. Another47 found that those with early Alzheimer's disease who were less physically fit had four times more brain shrinkage when compared to normal older adults than those who were more physically fit, suggesting the value of physical fitness extends to slowing down the progression of the disease.

Another reason for exercise to prevent dementia is through its effect on cardiovascular fitness, and a reasonably large four-year study48 did indeed find that the most active (top third) were significantly less likely to develop vascular dementia than the least active (bottom third). Interestingly, no such association was found with Alzheimer’s disease. However, at least two large studies have found a significantly reduced risk of dementia in those who had higher levels of fitness49 or exercised three or more times a week50. It may be that exercise has a greater effect on vascular dementia, but many cases of Alzheimer's dementia are actually mixed dementia, with a vascular component.

References
  1. Scarmeas, N. et al. 2009. Mediterranean Diet and Mild Cognitive Impairment. Archives of Neurology, 66(2), 216-225.
  2. Scarmeas, N. et al. 2009. Physical Activity, Diet, and Risk of Alzheimer Disease. Journal of the American Medical Association, 302(6), 627-637.
  3. Barberger-Gateau, P. et al. 2007. Dietary patterns and risk of dementia: The Three-City cohort study. Neurology, 69, 1921-1930.
  4. Dai, Q. et al. 2006. Fruit and Vegetable Juices and Alzheimer's Disease: The Kame Project. The American Journal of Medicine, 119 (9), 751-759
  5. Gray, S.L. et al. 2008. Antioxidant Vitamin Supplement Use and Risk of Dementia or Alzheimer's Disease in Older Adults. Journal of the American Geriatrics Society, 56 (2), 291–295.
  6. Zandi, P.P., Anthony, J.C., Khachaturian, A.S., Stone, S.V., Gustafson, D., Tschanz, J.T., Norton, M.C., Welsh-Bohmer, K.A. & Breitner, J.C.S. 2004. Reduced Risk of Alzheimer Disease in Users of Antioxidant Vitamin Supplements: The Cache County Study. Archives of Neurology, 61, 82-88.
  7. Engelhart, M.J., Geerlings, M.I., Ruitenberg, A., van Swieten, J.C., Hofman, A., Witteman, J.C.M. & Breteler, M.M.B. 2002. Dietary Intake of Antioxidants and Risk of Alzheimer Disease. JAMA, 287, 3223-3229.
  8. Morris, M.C., Evans, D.A., Bienias, J.L., Tangney, C.C., Bennett, D.A., Aggarwal, N., Wilson, R.S. & Scherr, P.A. 2002. Dietary Intake of Antioxidant Nutrients and the Risk of Incident Alzheimer Disease in a Biracial Community Study. JAMA, 287, 3230-3237.
  9. Heo, H.J. & Lee, C.Y. 2004. Protective Effects of Quercetin and Vitamin C against Oxidative Stress-Induced Neurodegeneration. Journal of Agricultural and Food Chemistry, 52 (25), 7514–7517.
  10. Ghosh, D., McGhie, T.K., Zhang, J., Adaim, A. & Skinner, M. 2006. Effects of anthocyanins and other phenolics of boysenberry and blackcurrant as inhibitors of oxidative stress and damage to cellular DNA in SH-SY5Y and HL-60 cells. Journal of the Science of Food and Agriculture, in press.
  11. Corrada, M.M., Kawas,C.H., Hallfrisch,J., Muller,D. & Brookmeyer,R. Reduced risk of Alzheimer’s disease with high folate intake: The Baltimore Longitudinal Study of Aging. Alzheimer’s & Dementia, 1 (1), 11-18.
  12. Troen, A.M. et al. 2008. B-vitamin deficiency causes hyperhomocysteinemia and vascular cognitive impairment in mice. Proceedings of the National Academy of Sciences, 105, 12474-12479.
  13. McIlroy, S.P., Dynan, K.B., Lawson, J.T., Patterson, C.C. & Passmore, A.P. 2002. Moderately Elevated Plasma Homocysteine, Methylenetetrahydrofolate Reductase Genotype, and Risk for Stroke, Vascular Dementia, and Alzheimer Disease in Northern Ireland. Stroke, 33, 2351–2356.
  14. Seshadri, S., Beiser, A., Selhub, J., Jacques, P.F., Rosenberg, I.H., D'Agostino, R.B., Wilson, P.W.F. & Wolf, P.A. 2002. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. The New England Journal of Medicine, 346, 476-483.
  15. Kruman, I.I., Kumaravel, T.S., Lohani, A., Pedersen, W.A., Cutler, R.G., Kruman, Y., Haughey, N., Lee, J., Evans, M. & Mattson, M.P. 2002. Folic Acid Deficiency and Homocysteine Impair DNA Repair in Hippocampal Neurons and Sensitize Them to Amyloid Toxicity in Experimental Models of Alzheimer's Disease. Journal of Neuroscience, 22, 1752-1762.
  16. Schaefer, E.J. et al. 2006. Plasma Phosphatidylcholine Docosahexaenoic Acid Content and Risk of Dementia and Alzheimer Disease. Archives of Neurology, 63, 1545-1550.
  17. Freund-Levi;, Y. et al. 2006. w-3 Fatty Acid Treatment in 174 Patients With Mild to Moderate Alzheimer Disease: OmegAD Study: A Randomized Double-blind Trial. Archives of Neurology, 63, 1402-1408.
  18. Quinn, J.F. et al. 2009. A clinical trial of docosahexaenoic acid (DHA) for the treatment of Alzheimer's disease. Presented at the Alzheimer's Association International Conference on Alzheimer's Disease July 11-16 in Vienna.

    Yurko-Mauro, K. et al. 2009. Results of the MIDAS Trial: Effects of Docosahexaenoic Acid on Physiological and Safety Parameters in Age-Related Cognitive Decline. Presented at the Alzheimer's Association International Conference on Alzheimer's Disease July 11-16 in Vienna.
  19. Lim, G.P., Calon, F., Morihara, T., Yang, F., Teter, B., Ubeda, O., Salem, N.Jr, Frautschy, S.A. & Cole, G.M. 2005. A Diet Enriched with the Omega-3 Fatty Acid Docosahexaenoic Acid Reduces Amyloid Burden in an Aged Alzheimer Mouse Model. Journal of Neuroscience, 25(12), 3032-3040.
  20. Calon, F. et al. 2004. Docosahexaenoic Acid Protects from Dendritic Pathology in an Alzheimer's Disease Mouse Model. Neuron, 43 (5), 633-645.
  21. Ma, Q-L. et al. 2007. Omega-3 Fatty Acid Docosahexaenoic Acid Increases SorLA/LR11, a Sorting Protein with Reduced Expression in Sporadic Alzheimer's Disease (AD): Relevance to AD Prevention. Journal of Neuroscience, 27 (52), 14299 - 14307.
  22. Collins, M.A. et al. 2008. Alcohol in Moderation, Cardioprotection, and Neuroprotection: Epidemiological Considerations and Mechanistic Studies. Alcoholism: Clinical and Experimental Research, Published Online 20 November.
  23. Truelsen, T., Thudium, D. & Grønbæk, M. 2002. Amount and type of alcohol and risk of dementia: The Copenhagen City Heart Study. Neurology, 59, 1313-1319.
  24. Wang, J. et al. 2008. Grape-Derived Polyphenolics Prevent Aβ Oligomerization and Attenuate Cognitive Deterioration in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 28, 6388-6392.
  25. Okello, E.J., Savelev, S.U. & Perry, E.K. 2004. In vitro Anti-beta-secretase and dual anti-cholinesterase activities of Camellia sinensis L. (tea) relevant to treatment of dementia. Phytotherapy Research, 18 (8), 624-627.
  26. Eskelinen, M.H. et al. 2009. Midlife Coffee and Tea Drinking and the Risk of Late-Life Dementia: A Population-based CAIDE Study. Journal of Alzheimer's Disease, 16(1).
  27. Luchsinger, J.A. et al. 2002. Caloric Intake and the Risk of Alzheimer Disease. Archives of Neurology, 59 (8), 1258-1263.
  28. Solomon, A. et al. 2008. Midlife Serum Total Cholesterol and Risk of Alzheimers Disease and Vascular Dementia Three Decades Later. Presented at the American Academy of Neurology Annual Meeting in Chicago, April 16.
  29. Pappolla, M.A. et al. 2003. Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology. Neurology, 61, 199-205.
  30. Yaffe, K., Barrett-Connor, E., Lin, F. & Grady, D. 2002. Serum Lipoprotein Levels, Statin Use, and Cognitive Function in Older Women. Archives of Neurology, 59,378-384.
  31. Kivipelto, M., Helkala, E., Laakso, M. P., Hanninen, T., Hallikainen, M., Alhainen, K., Soininen, H., et al. (2001). Midlife vascular risk factors and Alzheimer's disease in later life: longitudinal, population based study. BMJ, 322(7300), 1447-1451.  http://www.bmj.com/content/322/7300/1447.full
  32. Tan, Z.S., Seshadri, S., Beiser, A., Wilson, P.W.F., Kiel, D.P., Tocco, M., D'Agostino, R.B. & Wolf, P.A. 2003. Plasma Total Cholesterol Level as a Risk Factor for Alzheimer Disease: The Framingham Study. Archives of Internal Medicine, 163, 1053-1057.
  33. Engelhart, M.J., Geerlings, M.I., Ruitenberg, A., van Swieten, J.C., Hofman, A., Witteman, J.C.M. & Breteler, M.M.B. 2002. Diet and risk of dementia: Does fat matter?: The Rotterdam Study. Neurology, 59, 1915-1921.
  34. Kim, W.S. et al. 2007. Role of ABCG1 and ABCA1 in Regulation of Neuronal Cholesterol Efflux to Apolipoprotein E Discs and Suppression of Amyloid-β Peptide Generation. Journal of Biological Chemistry, 282, 2851-2861.
  35. Rönnemaa, E. et al. 2008. Impaired insulin secretion increases the risk of Alzheimer disease. Neurology, first published on April 9 as doi: doi:10.1212/01.wnl.0000310646.32212.3a
  36. Luchsinger, J.A. et al. 2007. Relation of Diabetes to Mild Cognitive Impairment. Archives of Neurology, 64, 570-575.
  37. Yaffe, K. et al. 2006. Glycosylated Hemoglobin Level and Development of Mild Cognitive Impairment or Dementia in Older Women. Journal of Nutrition, Health, and Aging, 10 (4).
  38. Arvanitakis, Z., Wilson, R.S., Bienias, J.L., Evans, D.A. & Bennett, D.A. 2004. Diabetes Mellitus and Risk of Alzheimer Disease and Decline in Cognitive Function. Archives of Neurology, 61, 661-666.
  39. Burdo, J.R. et al. 2008. The pathological interaction between diabetes and presymptomatic Alzheimer's disease. Neurobiology of Aging, Available online 26 March 2008 .
  40. Zhao,W-Q. et al. 2007. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB Journal, published online ahead of print August 24.
  41. Miller, B.C., Eckman, E.A., Sambamurti, K., Dobbs, N., Chow, K.M., Eckman, C.B., Hersh, L.B. & Thiele, D.L. 2003. Amyloid-β peptide levels in brain are inversely correlated with insulysin activity levels in vivo. PNAS, 100, 6221-6226. published online before print.
  42. Beydoun, M.A., Beydoun, H.A. & Wang, Y. 2008. Obesity and central obesity as risk factors for incident dementia and its subtypes: a systematic review and meta-analysis. Obesity Reviews, 9 (3), 204–218.
  43. Whitmer, R.A., et al. 2008. Central obesity and increased risk of dementia more than three decades later. Neurology, published online ahead of print March 26.
  44. Kivipelto,M. et al. 2006. Risk score for the prediction of dementia risk in 20 years among middle aged people: a longitudinal, population-based study. Lancet Neurology, advance online publication 3 August
  45. Akterin, S. 2008. From cholesterol to oxidative stress in Alzheimer's disease: A wide perspective on a multifactorial disease. Doctoral thesis, Karolinska Institutet. https://openarchive.ki.se/xmlui/handle/10616/38590
  46. Erickson, K.I. et al.  2009. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus, Published online 2 January.
  47. Burns, J.M. et al. 2008. Cardiorespiratory fitness and brain atrophy in early Alzheimer disease. Neurology, 71, 210-216.
  48. Ravaglia, G. et al. 2007. Physical activity and dementia risk in the elderly. Findings from a prospective Italian study. Neurology, published online ahead of print December 19.
  49. Wang, L., Larson, E.B., Bowen, J.D. & van Belle, G. 2006. Performance-Based Physical Function and Future Dementia in Older People. Archives of Internal Medicine, 166, 1115-1120.
  50. Larson, E.B., Wang, L., Bowen, J.D., McCormick, W.C., Teri, L., Crane, P., & Kukull, W. 2006. Exercise Is Associated with Reduced Risk for Incident Dementia among Persons 65 Years of Age and Older. Annals of Internal Medicine, 144 (2), 73-81.

Dementia: Risk Factors

Genes

Several genes have been implicated in Alzheimer's, but the big one is the e4 allele of the ApoE gene (on chromosome 19). This variant is found in about a quarter of the population.

Having it doesn't mean you are foreordained to develop Alzheimer's, but it certainly increases the risk substantially. The risk goes up considerably more if both of your genes are the e4 variant (remember you inherit two: one from each parent).

It also increases if you have both the ApoE-e4 and the D10S1423 234-bp allele (found on chromosome 10). The combined risk of these two gene variants has been described as being greater than the increased risk of lung cancer caused by smoking1. Chromosome 10 has also been implicated in setting the age at which it begins, for both Alzheimer's and Parkinson's diseases, in those genetically disposed.

Another gene that has been linked to Alzheimer's is the KIBRA gene (on chromosome 5) — carriers of the T-allele have a 25% lower risk of developing Alzheimer's compared to those who carry the C-allele2.

It does seem that having the right, or wrong, genes is more important than we believed. Data from the Swedish Twin Registry3, involving nearly 12,000 people aged 65 and older, estimated that genetic influence accounted for 79% of Alzheimer's risk, with 95% probability of being within the range 67 to 88%.

But it's not just a matter of genes. Not everyone with the 'wrong' genes will develop dementia, and not everyone who develops dementia has the wrong genes. There are a number of lifestyle actions that affect it.

Even the genetic picture is not as simple as it sounds. One study4, for example, found indications that having a mother who had Alzheimer's is more significant than father's status. Data from the long-running Framingham Heart Study has found5 that cognitive impairment is more likely in those whose who have the ApoE ε4 gene — but only if they had a parent with dementia (particularly if it was Alzheimer's). There was no effect of parental dementia in those who didn’t have the ApoE ε4 gene.

For those who carry the “Alzheimer’s” APOE-4 gene, and those who later develop dementia, there is an association between smaller head size and lower educational achievement6. In other words, having both a small head size and low educational achievement in early life makes it more likely that a person will develop Alzheimer’s — probably because of their lack of cognitive reserve.

Cardiac & Blood Pressure Problems

A very large study7 found that those with atrial fibrillation, regardless of age, were 44% more likely to develop dementia, with those younger than 70 particularly at risk (130% more likely to develop dementia). Previous studies have connected atrial fibrillation with vascular dementia; this finding extends it to all dementia types.

Another, smaller, study8 (135 patients) found that memory declined significantly faster in those with high blood pressure or atrial fabrillation.

Atrial fibrillation, the most common heart rhythm problem, has a strong genetic link, and is also a risk factor for stroke.

Smoking

A very large seven-year study9 found that older adults who smoked were 50% more likely to develop dementia than people who had never smoked or no longer smoked. Smoking did not increase the risk for those with the Alzheimer’s gene apolipoprotein E4, but for those without the gene, smoking increased the risk by nearly 70%. Another large study10 found that heavy smokers developed the disease 2.3 years sooner, while heavy drinkers developed Alzheimer’s nearly 5 years earlier than those who were not. Those with the APOE e4 gene developed the disease three years sooner than those without the gene variant. These three risk factors were additive — those with all three developed the disease 8.5 years earlier than those with none of the risk factors.

A large national study11 also found that exposure to second-hand smoke also increases your risk.

Depression, stress & anxiety

Several studies12 have found evidence that depression, high level of stress or anxiety, and even loneliness, increase the risk of later developing dementia.

Other Possible Risk Factors

Findings from a study13 using genetically engineered mice suggests that people genetically predisposed to Alzheimer's disease or with excessive amounts of beta amyloid in their brains are at increased risk of developing the disease earlier if they receive high concentrations of oxygen, for example during or after surgery.

A large long-running study14 has found that women with both the lowest and the highest levels of thyrotropin (a hormone secreted by the pituitary gland that helps regulate thyroid gland function) had more than double the risk of developing Alzheimer's disease. No such association was found in men.

References
  1. Zubenko, G.S., Hughes, H.B. III & Stiffler, J.S. 2001. D10S1423 identifies a susceptibility locus for Alzheimer's disease in a prospective, longitudinal, double-blind study of asymptomatic individuals. Molecular Psychiatry, 6 (4), 413-419.
  2. Corneveaux, J.J. et al. In press. Evidence for an association between KIBRA and late-onset Alzheimer's disease. Neurobiology of Aging.
  3. Gatz, M. et al. 2006. Role of Genes and Environments for Explaining Alzheimer Disease. Archives of General Psychiatry, 63, 168-174.
  4. Mosconi, L. et al. 2007. Maternal family history of Alzheimer's disease predisposes to reduced brain glucose metabolism. PNAS, 104, 19067-19072.
  5. Debette, S. et al. 2009. Parental Dementia and Alzheimer Disease Are Associated with Poorer Memory in Middle-Aged Adults: The Framingham Offspring Study. Presented April 29 at the American Academy of Neurology's 61st Annual Meeting in Seattle, Washington.
  6. Mortimer, J,A., Snowdon, D.A.  & Markesbery, W.R. 2008. Small Head Circumference is Associated With Less Education in Persons at Risk for Alzheimer Disease in Later Life. Alzheimer Disease & Associated Disorders, 22(3), 249-254.
  7. Bunch, T.J. et al. 2009. Atrial Fibrillation is Independently Associated with Senile, Vascular, and Alzheimer's Dementia. Presented Friday, May 15, at "Heart Rhythm 2009," the annual scientific sessions of the Heart Rhythm Society in Boston.
  8. Mielke, M.M. et al. 2007. Vascular factors predict rate of progression in Alzheimer disease. Neurology, 69, 1850-1858.
  9. Reitz, C., den Heijer, T., van Duijn, C., Hofman, A. & Breteler, M.M.B. 2007. Relation between smoking and risk of dementia and Alzheimer disease: The Rotterdam Study. Neurology, 69, 998-1005.
  10. Harwood, D. et al. 2008. Impact of Alcohol Use, Smoking and Apolipoprotein-E Epsilon 4 Allele (APOE 4) on Age of Onset of Late Onset Alzheimers Disease (LOAD). Presented at the American Academy of Neurology 60th Annual Meeting in Chicago, April 16.
  11. Llewellyn, D.J. et al. 2009. Exposure to secondhand smoke and cognitive impairment in non-smokers: national cross sectional study with cotinine measurement. British Medical Journal, 338, 462. Full text available here.
  12. Peavy, G.M. et al. 2007. The Effects of Prolonged Stress and APOE Genotype on Memory and Cortisol in Older Adults. Biological Psychiatry, 62 (5), 472-478.

    Rapp, M.A. et al. 2006. Increased Hippocampal Plaques and Tangles in Patients With Alzheimer Disease With a Lifetime History of Major Depression. Archives of General Psychiatry, 63,161-167.

    Wang, H. -X. et al. 2009. Personality and lifestyle in relation to dementia incidence. Neurology, 72, 253-259.

    Wilson, R.S., Arnold, S.E., Beck, T.L., Bienias, J.L. & Bennett, D.A. 2008. Change in Depressive Symptoms During the Prodromal Phase of Alzheimer Disease. Archives of General Psychiatry, 65(4), 439-445.

    Wilson, R.S., Schneider, J.A., Boyle, P.A., Arnold, S.E., Tang, Y. & Bennett, D.A. 2007. Chronic distress and incidence of mild cognitive impairment. Neurology, 68, 2085-2092.

    Wilson, R.S., Krueger, K.R., Arnold, S.E., Schneider, J.A., Kelly, J.F., Barnes, L.L., Tang, Y. & Bennett, D.A. 2007. Loneliness and Risk of Alzheimer Disease. Archives of General Psychiatry, 64, 234-240.

    Wilson, R.S., Evans, D.A., Bienias, J.L., Mendes de Leon, C.F., Schneider, J.A. & Bennett, D.A. 2003. Proneness to psychological distress is associated with risk of Alzheimer’s disease. Neurology, 61, 1479-1485.

    Wilson, R.S., Barnes, L.L., de Leon, C.F.M., Aggarwal, N.T., Schneider, J.S., Bach, J., Pilat, J., Beckett, L.A., Arnold, S.E., Evans, D.A. & Bennett, D.A. 2002. Depressive symptoms, cognitive decline, and risk of AD in older persons. Neurology, 59, 364-370.
  13. Arendash, G.W. et al. 2009. Oxygen treatment triggers cognitive impairment in Alzheimer's transgenic mice. NeuroReport, 20 (12), 1087-1092.
  14. Tan, Z.S. et al. 2008. Thyroid Function and the Risk of Alzheimer Disease: The Framingham Study. Archives of Internal Medicine, 168(14), 1514-1520.

Preventing Dementia: Mental stimulation

Stimulating activities

A 5-year study1 involving 488 people age 75 to 85 found that, for the 101 people who developed dementia, the greater the number of stimulating activities (reading, writing, doing crossword puzzles, playing board or card games, having group discussions, and playing music) they engaged in, the longer rapid memory loss was delayed. Similarly, a study2 involving 1321 randomly selected people aged 70 to 89, of whom 197 had mild cognitive impairment, has found that reading books, playing games, participating in computer activities or doing craft activities such as pottery or quilting was associated with a 30 to 50% decrease in the risk of developing memory loss compared to people who did not do those activities.

Moreover, two activities during middle age (50-65) were also significantly associated with a reduced chance of later memory loss: participation in social activities and reading magazines. The value of social activities is consistent with another, small, study3 that found that social networks, like education, offers a 'protective reserve' capacity that spares individuals the clinical manifestations of Alzheimer's disease. As the size of the social network increased, the same amount of Alzheimer’s pathology in the brain had less effect on cognitive test scores. For those without much pathology (plaques and tangles), social network size had little effect on cognition.

This supports another study4 involving 469 people aged 75 and older, that found that those who participated at least twice weekly in reading, playing games (chess, checkers, backgammon or cards), playing musical instruments, and dancing were significantly less likely to develop dementia. Although the evidence on crossword puzzles was not quite statistically significant, those who did crossword puzzles four days a week had a much lower risk of dementia than those who did one puzzle a week.

Similarly, a study5 of 700 seniors found that more frequent participation in cognitively stimulating activities, such as reading books, newspapers or magazines, engaging in crosswords or card games, was significantly associated with a reduced risk of Alzheimer’s disease. On average, compared with someone with the lowest activity level, the risk of disease was 47% lower for those whose frequency of activity was highest.

In the first comprehensive review6 of the research into 'cognitive reserve', which looks at the role of education, occupational complexity and mentally stimulating activities in preventing cognitive decline, researchers concluded that complex mental activity across people’s lives almost halves the risk of dementia. All the studies also agreed that it was never too late to build cognitive reserve. The review covered 29,000 individuals across 22 studies.

A review7 of research on the impact of cognitive training on the healthy elderly (not those with mild cognitive impairment or Alzheimer's disease), has found no evidence that structured cognitive intervention programs affects the progression of dementia in the healthy elderly population.

Post-mortem analysis of participants in a large, long-running study8 has provided more support for the idea that mental stimulation protects against Alzheimer’s. The study found a cognitively active person in old age was 2.6 times less likely to develop dementia and Alzheimer’s disease than a cognitively inactive person in old age. This association remained after controlling for past cognitive activity, lifetime socioeconomic status, and current social and physical activity. Frequent cognitive activity during old age was also associated with reduced risk of mild cognitive impairment.

Research involving genetically engineered mice9 has found that mice whose brains had lost a large number of neurons regained long-term memories and the ability to learn after their surroundings were enriched with toys and other sensory stimuli, pointing to the importance of maintaining cognitive stimulation as long as possible. Similarly, another mouse study10 found that short but repeated learning sessions can slow the development of those hallmarks of Alzheimer's, beta amyloid plaques and tau tangles. And another11 found that an enriched environment, with more opportunities to exercise, explore and interact with others, dramatically reduces levels of beta-amyloid peptides.

Education & iq

A study12 involving some 6,500 older Chicago residents being interviewed 3-yearly for up to 14 years (average 6.5 years), has found that while at the beginning of the study, those with more education had better memory and thinking skills than those with less education, education was not related to how rapidly these skills declined during the course of the study. The result suggests that the benefit of more education in reducing dementia risk results simply from the difference in level of cognitive function.

Another study13 has come out supporting the view that people with more education and more mentally demanding occupations may have protection against the memory loss that precedes Alzheimer's disease, providing more evidence for the idea of cognitive reserve. The 14-month study followed 242 people with Alzheimer's disease, 72 people with mild cognitive impairment, and 144 people with no memory problems.

Another study14 has come out confirming that people with more years of education begin to lose their memory later than those with less education, but decline faster once it begins. Researchers note that since the participants were born between 1894 and 1908, their life experiences and education may not represent that of people entering the study age range today.

A study15 of 312 New Yorkers aged 65 and older, who were diagnosed with Alzheimer's disease and monitored for over 5 years, found that overall mental agility declined faster for each additional year of education, particularly in the speed of thought processes and memory, and was independent of age, mental ability at diagnosis, or other factors likely to affect brain function, such as depression and vascular disease. It’s suggested this may reflect the greater ability of brains with a higher cognitive reserve to tolerate damage, meaning the damage is greater by the time it becomes observable in behavior.

The Nun Study16 found that nuns who completed 16 or more years of formal education or whose head circumference was in the upper two-thirds were four times less likely to be demented than those with both smaller head circumferences and lower education.

Post-mortem study17 of the brains of 130 participants in the Religious Orders Study found that the relationship between cognitive performance and the number of amyloid plaques in the brain changed with level of formal education. The more years education you had, the less effect the same number of plaques had on actual cognitive performance. It’s worth noting that this considerable difference was observed in a population where even the least educated had some college attendance; presumably the difference would be even more marked in the general population.

A long-running Finnish study18 has found that compared with people with five or less years of education, those with six to eight years had a 40% lower risk of developing dementia and those with nine or more years had an 80% lower risk. Generally speaking, people with low education levels seemed to lead unhealthier lifestyles, but the association remained after lifestyle choices and characteristics such as income, occupation, physical activity and smoking had been taken into account.

An analysis of high school records and yearbooks from the mid-1940s19, and interviews with some 400 of these graduates, now in their 70s, and their family members, has found that those who were more active in high school and who had higher IQ scores, were less likely to have mild memory and thinking problems and dementia as older adults.

An analysis20 of 184 people with dementia found that the mean age of onset of dementia symptoms in the 91 monolingual patients was 71.4 years, while for the 93 bilingual patients it was 75.5 years — a very significant difference.

A study21 of 122 people with Alzheimer's and 235 people without the disease found that people with Alzheimer's are more likely to have had less mentally stimulating careers than their peers who do not have Alzheimer's.

A study22 of 173 people from the Scottish Mental Survey of 1932 who have developed dementia has found that, compared to matched controls, those with vascular dementia were 40% more likely to have low IQ scores when they were children than the people who did not develop dementia. This difference was not true for those with Alzheimer's disease. The findings suggest that low childhood IQ may act as a risk factor for vascular dementia through vascular risks rather than the "cognitive reserve" theory. 

References
  1. Hall, C.B. et al. 2009. Cognitive activities delay onset of memory decline in persons who develop dementia. Neurology, 73, 356-361.
  2. Geda, Y.E. et al. 2009. Cognitive Activities Are Associated with Decreased Risk of Mild Cognitive Impairment: The Mayo Clinic Population-Based Study of Aging. Presented April 28 at the American Academy of Neurology's 61st Annual Meeting in Seattle.
  3. Bennett, D.A., Schneider,J.A., Tang,Y., Arnold,S.E. & Wilson,R.S. 2006. The effect of social networks on the relation between Alzheimer's disease pathology and level of cognitive function in old people: a longitudinal cohort study. Lancet Neurology,5, 406-412.
  4. Verghese, J., Lipton, R.B., Katz, M.J., Hall, C.B., Derby, C.A., Kuslansky, G., Ambrose, A.F., Sliwinski, M. & Buschke, H. 2003. Leisure Activities and the Risk of Dementia in the Elderly. New England Journal of Medicine, 348 (25), 2508-2516.
  5. Wilson, R.S., de Leon, C.F.M., Barnes, L.L., Schneider, J.S., Bienias, J.L., Evans, D.A. & Bennett, D.A. 2002. Participation in Cognitively Stimulating Activities and Risk of Incident Alzheimer Disease.

    JAMA, 287,742-748.
  6. Valenzuela, M.J. & Sachdev, P. 2006. Brain reserve and dementia: a systematic review. Psychological Medicine, In press
  7. Papp, K.V., Walsh, S.J. & Snyder, P.J. 2009. Immediate and delayed effects of cognitive interventions in healthy elderly: A review of current literature and future directions. Alzheimer's & Dementia, 5 (1), 50-60.
  8. Wilson, R.S., Scherr, P.A., Schneider, J.A., Tang, Y. & Bennett, D.A. 2007. The relation of cognitive activity to risk of developing Alzheimer’s disease. Neurology, published online ahead of print June 27.
  9. Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M. & Tsai, L-H. 2007. Recovery of learning and memory is associated with chromatin remodelling. Nature, 447, 178-182.
  10. Billings, L.M., Green, K.N., McGaugh, J.L. & LaFerla, F.M. 2007. Learning Decreases Aß*56 and Tau Pathology and Ameliorates Behavioral Decline in 3xTg-AD Mice. Journal of Neuroscience, 27, 751-761.
  11. Lazarov, O.et al. 2005. Environmental Enrichment Reduces Aβ Levels and Amyloid Deposition in Transgenic Mice. Cell, 120(5), 701-713.
  12. Wilson, R.S., Hebert, L.E., Scherr, P.A., Barnes, L.L., de Leon, C.F.M. & Evans, D.A. 2009. Educational attainment and cognitive decline in old age. Neurology, 72, 460-465.
  13. Garibotto, V. et al. 2008. Education and occupation as proxies for reserve in aMCI converters and AD: FDG-PET evidence. Neurology, 71, 1342-1349.
  14. Hall, C.B., Derby, C., LeValley, A., Katz, M.J., Verghese, J. & Lipton, R.B. 2007. Education delays accelerated decline on a memory test in persons who develop dementia. Neurology, 69, 1657-1664.
  15. Scarmeas, N., Albert, S.M., Manly, J.J. & Stern, Y. 2006. Education and rates of cognitive decline in incident Alzheimer’s disease. Journal of Neurology Neurosurgery and Psychiatry, 77, 308-316.
  16. Mortimer, J.A., Snowdon, D.A. & Markesbery, W.R. 2003. Head Circumference, Education and Risk of Dementia: Findings from the Nun Study.Journal of Clinical and Experimental Neuropsychology, 25 (5), 671-679.
  17. Bennett, D.A., Wilson, R.S., Schneider, J.A., Evans, D.A., de Leon, M.C.F., Arnold, S.E., Barnes, L.L. & Bienias, J.L. 2003. Education modifies the relation of AD pathology to level of cognitive function in older persons. Neurology, 60, 1909-1915.
  18. Ngandu, T. et al. 2007. Education and dementia: What lies behind the association? Neurology, 69, 1442-1450.
  19. Fritsch, T., Smyth, K.A., McClendon, M.J., Ogrocki, P.K., Santillan, C., Larsen, J.D. & Strauss, M.E. 2005. Associations Between Dementia/Mild Cognitive Impairment and Cognitive Performance and Activity Levels in Youth. Journal of the American Geriatrics Society, 53(7), 1191.
  20. Bialystok, E., Craik, F.I.M. & Freedman, M. 2007. Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia, 45 (2), 459-464./li>
  21. Smyth, K.A. et al. 2004. Worker functions and traits associated with occupations and the development of AD. Neurology, 63 (3), 498-503.
  22. McGurn, B., Deary, I.J. & Starr, J.M. 2008. Childhood cognitive ability and risk of late-onset Alzheimer and vascular dementia. Neurology, first published on June 25, 2008 as doi: doi:10.1212/01.wnl.0000319692.20283.10 .

Movement with Meaning

Barbara Larsen is the creator of a program called "Movement with Meaning", that aims to help Alzheimer's sufferers "hold onto" themselves for as long as possible. She's also written a book about the program: Movement With Meaning: A Multisensory Program for Individuals With Early-stage Alzheimer's Disease. And she's kindly written an article about the program just for us. Here it is.

Movement with Meaning: A Multisensory Program for Individuals in Early-Stage Alzheimer's Disease

Those of us in the field of dementia care are reexamining our philosophical beliefs and exploring practical, hands-on approaches in our relationships with individuals living with Alzheimer's disease. We are creating innovative programs and developing a new framework for preserving the emotional health, autonomy, and dignity of those who need us to walk hand in hand with them, witnessing the process of their experiences with empathy and respect.

Movement with Meaning is one such program. Designed for persons in the early stage of Alzheimer's disease, Movement with Meaning reinforces the remaining strengths and abilities of people with dementia by using a multisensory approach that stimulates all five senses. Practical and interactive by nature, the curriculum is ideal for physical therapists, recreational instructors, and activity directors in adult day centers and assisted living facilities, as well as health care professionals who are senior trainers, music or dance therapists.

As the mind begins to slowly unravel, the body becomes the refuge - the container - the ground - the point of reference. In a Movement with Meaning class, the multisensory activities are divided into five segments that create a choreography of movements in which short, repetitive exercises increase a sense of well being. The program introduces simple breathing techniques, poetry, music, movement exercises (bilateral integration exercises and yoga postures), and sensory activities. Once the person with Alzheimer's disease experiences a sense of his or her inner landscape, anxiety and confusion begin to subside. Movement with Meaning provides an opportunity for the participants to recognize the abilities and talents lying dormant behind the disease and find a new path to connect and communicate with each other and their families.

What an opportunity we have with the advent of early diagnosis. So why wait? Because the long-term memory is not affected in the early stage of Alzheimer's disease, these memories are preserved. I have found that repetition is an effective method for not only retrieving these memories, but as an essential tool in a Movement with Meaning class.

A study published in the American Journal of Alzheimer's Disease and other Dementias (Jan-Feb, 2004 issue) shed light on the effectiveness of repetitive work on maintaining functional levels in Alzheimer's disease patients. In the Adapted Work Program participants were given jobs that included packaging, shredding, folding laundry, stamping and sending our mailings. The program was closed due to budget cuts in funding. The participants were transferred to a traditional day care program which included activities such as bingo, ceramics, music, and current events. Before moving to the traditional day care setting the participants were assessed with the MMSE (Mini-Mental Status Exam), the Cognitive Performance Test, and the Geriatric Depression Scale. And then reassessed again in 4 months, after being at the traditional day care facility. The MMSE and the Cognitive Performance Test scores were lower than expected. All the spouses of the participants reported declines in Activities of Daily Living. The conclusion of the study stated that activities that involve repetitive, sequencing skills promote better self-care at home than traditional day care environments. As mentioned above Movement with Meaning is divided into five segments, with a thematic thread that reinforces the continuity of the program.

The first segment in a Movement with Meaning class is "Centering through Breathing." When an individual with Alzheimer's disease experiences disorientation, has difficulty remembering names, or finding the right word, this can be unsettling and cause anxiety. The antidote to help diminish anxiety is mindful breathing. Once the mind is calm and relaxed concentration will follow. In his book, "Your Memory: How it Works, and How to Improve it," K. Higbee documents that high anxiety interferes with attention and concentration. Therefore, it is imperative to establish an environment that promotes a peaceful inner state. When participants feel relax and calm the ability retrieve firmly rooted songs, prayer, and poems begin to surface.

The second segment in a Movement with Meaning class is "Learning by Heart." The participants memorize a short poem or song. Poems and songs that were learned early in life are stored in the long-term memory and remain accessible to the person with early-stage Alzheimer's disease. Repetition is the method for learning a new poem or song. The rhythm patterns and cadence in each poem or song creates an atmosphere that is safe and nonthreatening and brings something to the lives of the participants that is representative of what was there before the disease. Included in the second segment is the use of visualization techniques to expand on the imagines evoked by a poem or song. Visualization increases concentration because it creates focus on the more subtle "mental pictures" and "feelings" of a poem or song.

The third segment is a Movement with Meaning class (A Delicate Balance and Nice and Easy Yoga) including both bilateral integration exercises and yoga postures. Problems with balance and coordination begin to occur in early-stage Alzheimer's disease. Muscles love rhythmic movement. By satiating the body with repetitive bilateral exercises or yoga postures, participants are not only integrating both left and right hemisphere of the brain but are also increasing their spatial awareness, balance, and coordination. These exercises and postures are similar to Tai Chi in that they help the participant identify the body's midline - the median plan where the left and right sides of the brain and body cross or overlap.

In a study in the Winter 2003-2004 issue of Generations an article titled: "Balance Intervention to Prevent Falls," addresses the importance of exercises that include flexibility, balance, and sensory awareness. A multidimensional program is important for fall reduction. By aligning the body with the earth, a nonverbal statement is made: "I know where my body is in time and space." By incorporating a physical component in a Movement with Meaning class, the transition from the cadence of a poem or the melody of a song is experienced as part of a continuum, unfolding a choreography of movements with a theme and purpose.

The fourth segment is a Movement with Meaning class, "A Sense of Timing," which introduces music and rhythmic exercises to help the participants integrate and embody a poem or song. The rhythm patterns are synchronized with the cadence and melody of the poem or song. Rhythmic instruments such as chimes, drums, bells, and claves are nonverbal ways of communicating. The repetition of a beat or dance evolves an inner musical sense, and inner timing. Without thinking, the participants begin to tap their feet or sway their bodies from side to side. Studies in Germany reveal that when individuals with Alzheimer's disease participate in music therapy that include rhythm instruments sensory and motor integration are promoted.

The last segment is a Movement with Meaning class, "Reawakening the Senses," devoted to using the senses of smell, taste, and touch, with attention to color, shape, and texture. Exploring the senses allows individuals with Alzheimer's disease to gain access to their own unique internal landscape. We make sense of the world through our senses. The body is the primary receptor and container of experience. Appropriate sensory stimulation is a main avenue to awakening latent memories, as well as supporting existing functional abilities.

When the elements Movement with Meaning are put together in a daily program, attention is refocused back to the body of the person with Alzheimer's disease. For whatever was lost in the cognitive realm can be recalled through the senses. As one participant in a Movement with Meaning stated when asked what she thought about the program, "I have enough to hold on to."

I'll ask the same question again: So why wait? The time is now, in the early stage, to reinforce remaining strengths and abilities. The time is now, while the individual is aware of his or her personal biography, to investigate the sense of the individual's inner landscape is changing. The time is now to create an environment that strives to preserve the identity and dignity of each individual affected by Alzheimer's disease.

Barbara Larsen, M.A., Ed.
Creator & Author, Movement with Meaning
P. O. Box 2636
Nevada City, CA 95959
blarsen@nccn.net

Dementia with Lewy Bodies

LBD: What is it?

Lewy Body Dementia is so called because the brains of affected people develop abnormal spherical masses of protein, called Lewy bodies, inside nerve cells. Lewy bodies are associated with Parkinson’s disease as well as dementia. Thus Lewy body dementia can refer to both Parkinson’s disease dementia and “dementia with Lewy bodies”. Lewy bodies are also often found in the brains of those with Alzheimer’s disease.

Unlike Alzheimer’s, however, dementia with Lewy bodies characteristically (but not invariably) begins with visual hallucinations.

Prevalence of LBD

Estimates of its prevalence are complicated by the lack of clearly defined clinical criteria, and vary widely. A 2005 review1 concluded that the range probably falls between 0 to 5% in the general population, and from 0 to 30.5% of all dementia cases (the very broad range reflects the confusion between Parkinson’s disease dementia (PDD), dementia with Lewy bodies, and Alzheimer’s where Lewy bodies are present).

How does LBD differ from Alzheimer's & PDD?

A comparison of these three disorders found that cognitive impairment in those with Alzheimer's disease and those with Lewy body dementia was similar, and more severe than in those with Parkinson's disease dementia.

The 1997 study2 also found that a simple test, in which patients are asked to draw and copy a clock face, distinguished those with Alzheimer’s and those with Lewy body dementia — of all the groups, only those with Lewy body dementia had equally poor scores in the “copy” part of the test compared to the “draw” part.

For more information:

Mayo Clinic: http://www.mayoclinic.com/health/lewy-body-dementia/DS00795

Lewy Body Dementia Association: http://www.lewybodydementia.org/

References
  1. Zaccai, J., McCracken, C. & Brayne, C. 2005. A systematic review of prevalence and incidence studies of dementia with Lewy bodies. Age and Ageing, 34(6), 561-566.
  2. Gnanalingham, K.K. et al. 1997. Motor and cognitive function in Lewy body dementia: comparison with Alzheimer's and Parkinson's diseases. Journal of Neurology, Neurosurgery, and Psychiatry, 62, 243-252.

Vascular & Mixed Dementia

Prevalence

Vascular dementia, as its name suggests, is caused by poor blood flow, produced by a single, localized stroke, or series of strokes.

It is the second most common dementia, accounting for perhaps 17% of dementias. It also co-occurs with Alzheimer's in 25-45% of cases. Although there are other types of dementia that also co-occur with Alzheimer's, mixed dementia generally refers to the co-occurrence of Alzheimer's and vascular dementia.

Risk factors

In general, unsurprisingly, vascular dementia has the same risk factors as cerebrovascular disease.

A study1 of 173 people from the Scottish Mental Survey of 1932 who have developed dementia has found that, compared to matched controls, those with vascular dementia were 40% more likely to have low IQ scores when they were children than the people who did not develop dementia. Because this was not true for those with Alzheimer's disease, it suggests that low childhood IQ may act as a risk factor for vascular dementia through vascular risks rather than the "cognitive reserve" theory.

Prevention

The exciting thing about vascular dementia is that it is far more preventable than other forms of dementia. As with risk, as a general rule, the same things that help you protect you from heart attacks and stroke will help protect you from vascular dementia. This means diet, and it means exercise.

A four-year study2 involving 749 older adults has found that the top one-third of participants who exerted the most energy in moderate activities such as walking were significantly less likely to develop vascular dementia than those people in the bottom one-third of the group.

Treatment

Apart from normal medical treatment for cerebrovascular problems, there are a couple of interesting Chinese studies that have looked specifically at vascular dementia.

The herb gastrodine has been used in China for centuries to treat disorders such as dizziness, headache and even ischemic stroke. A 12-week, randomized, double-blind trial3 involving 120 stroke patients who were diagnosed with mild to moderate vascular dementia has found that  gastrodine and Duxil® (a drug used to treat stroke patients in China) produced similar overall levels of cognitive improvement -- although more patients showed 'much improvement' with gastrodine (23% vs 14%).

A Chinese pilot study4 involving 25 patients with mild to moderate vascular dementia found that ginseng compound significantly improved their average memory function after 12 weeks, but more research (larger samples, placebo-controls) is needed before this finding can be confirmed. Five years on I have still not seen such a study.

References
  1. McGurn, B., Deary, I.J. & Starr, J.M. 2008. Childhood cognitive ability and risk of late-onset Alzheimer and vascular dementia. Neurology, first published on June 25, 2008 as doi: doi:10.1212/01.wnl.0000319692.20283.10
  2. Ravaglia, G. et al. 2007. Physical activity and dementia risk in the elderly. Findings from a prospective Italian study. Neurology, published online ahead of print December 19.
  3. Tian, J.Z. et al. 2003. A double-blind, randomized controlled clinical trial of compound of Gastrodine in treatment of mild and moderate vascular dementia in Beijing, China. Presented at the American Heart Association's Second Asia Pacific Scientific Forum in Honolulu on June 10.
  4. Tian, J.Z. et al. 2003. Presented at the American Stroke Association's 28th International Stroke Conference on February 14 in Phoenix. Press release

Frontotemporal Dementia

What is it?

Frontotemporal dementia is a disorder of the frontal lobes and includes what was known as primary progressive aphasia. Although it occurs far less often than Alzheimer's disease, among dementia sufferers younger than 65 it is estimated to occur at about the same rate. In other words, frontotemporal dementia is, unlike the most common dementias, not a disorder of age. Most sufferers become symptomatic in their 50s and 60s.

Frontotemporal dementia generally begins with a focal symptom, such as aphasia, before (usually a number of years later) progressing to more generalized dementia.

There are several types of frontotemporal dementia. The most common (around 60% of FTD cases) is known as the behavioral variant (also, Pick's disease). This is characterized by impairment in social and emotional skills. The other 40% of FTD cases have language impairments -- about half of these suffer from semantic FTD, characterized by difficulties in remembering the meanings of words; the other half suffer from progressive nonfluent aphasia, characterized by difficulties in producing language (although they understand what they're trying to say).

In around 15% of FTD cases (most usually the behavioral variant), motor neurone disease also develops.

Prevalence

A large-scale epidemiological study1 in the Netherlands indicated frontotemporal dementia occurs at a rate of 1.1 per 100,000, with the prevalence highest among those ages 60 to 69, at 9.4 per 100,000. The prevalence among people ages 45 to 64 was estimated to be 6.7 per 100,000 (this was after autopsies caused the number of diagnosed cases to go up, with 17 of 50 patients undiagnosed in life). Unlike other forms of dementia, where most occurrences begin in older adults, symptoms began after age 65 in only 22% of patients. The median age of onset was 58, with a range from 33 to 80.

A family history of dementia was present in 43% of patients. Interestingly, whites accounted for 99% of all cases despite an ample nonwhite population.

A large U.K. study2 found prevalences of early-onset FTD and Alzheimer's were the same in the 45-64 population: 15 per 100,000. The mean age at onset of FTD was 52.8 years and there was a striking male preponderance (14:3).

This rate is notably higher than that found in the Dutch study, and it has been suggested that the reason is ethnicity -- the Dutch study, as mentioned, had a significant proportion of non-Caucasians, while the British (Cambridge) study explicitly mentioned that minorities were under-represented.

It has been estimated that frontotemporal dementia accounts for approximately 8% of patients with dementia, but this is now thought to be an underestimation.

Genes as a factor

There is a high level of genetic involvement in this type of dementia.

As mentioned, the Dutch study found a family history of dementia in 43% of FTD patients. Another large Dutch study3 found 38% of FTD patients had one or more first-degree relatives with dementia before age 80 compared to 15% of age-matched controls; 10% had two or more first-degree relatives with dementia compared with 0.9% of the controls. FTD patients were also three times more likely to have 2 "Alzheimer's genes" (2 e4 alleles of the ApoE gene) than the controls: 7% vs 2.3%.

This study also supports findings with other dementias that earlier-onset is more likely to have genetic causes. First-degree relatives of FTD patients (who had twice the risk of dementia before age 80 compared with relatives of controls) were much more likely to develop dementia early: age of onset of dementia in affected first-degree relatives of FTD patients averaged was just under 61, compared to 72.3 for affected first-degree relatives of controls.

The genes implicated in familial cases of FTD are on chromosome 17, in the gene for the tau protein, and in the gene for the progranulin protein. Research4 has now confirmed that people with these hereditable defects produce only half of the normal amount of progranulin, and recently a simple test for measuring the quantity of progranulin in the blood was developed. The test reveals whether someone has the mutations that carry an increased risk of FTD.

A recent study5 involving 225 FTD patients found 41.8% of patients had some family history, although only 10.2% had a clear autosomal dominant history (at least 3 cases within the last 2 generations). However, the importance of genes varied across the different clinical subtypes of the disease, with the behavioral variant being the most heritable and FTD–motor neuron disease and the language syndromes (particularly semantic dementia) the least heritable.

For more information:

http://emedicine.medscape.com/article/1135164-overview

https://memory.ucsf.edu/dementia/ftd

References
  1. Rosso, S.M. et al. 2003. Frontotemporal dementia in The Netherlands: Patient characteristics and prevalence estimates from a population-based study. Brain, 126, 2016-22. Full text available at http://brain.oxfordjournals.org/cgi/content/full/126/9/2016
  2. Ratnavalli, E., Brayne, C., Dawson, K. & Hodges, J.R. 2002. The prevalence of frontotemporal dementia. Neurology, 58, 1615-1621.
  3. Stevens, M. et al. 1998. Familial aggregation in frontotemporal dementia. Neurology, 50(6), 1541-5.
  4. Sleegers, K. et al. 2009. Serum biomarker for progranulin-associated frontotemporal lobar degeneration. Annals of Neurology, Published online March 13.
  5. Rohrer, J.D. et al. 2009. The heritability and genetics of frontotemporal lobar degeneration. Neurology, 73(18), 1451-1456.