Desirable difficulty for effective learning
When we are presented with new information, we try and connect it to information we already hold. This is automatic. Sometimes the information fits in easily; other times the fit is more difficult — perhaps because some of our old information is wrong, or perhaps because we lack some of the knowledge we need to fit them together.
When we're confronted by contradictory information, our first reaction is usually surprise. But if the surprise continues, with the contradictions perhaps increasing, or at any rate becoming no closer to being resolved, then our emotional reaction turns to confusion.
Confusion is very common in the learning process, despite most educators thinking that effective teaching is all about minimizing, if not eliminating, confusion.
But recent research has suggested that confusion is not necessarily a bad thing. Indeed, in some circumstances, it may be desirable.
I see this as an example of the broader notion of ‘desirable difficulty’, which is the subject of my current post. But let’s look first at this recent study on confusion for learning.
In the study, students engaged in ‘trialogues’ involving themselves and two animated agents. The trialogues discussed possible flaws in a scientific study, and the animated agents took the roles of a tutor and a student peer. To get the student thinking about what makes a good scientific study, the agents disagreed with each other on certain points, and the student had to decide who was right. On some occasions, the agents made incorrect or contradictory statements about the study.
In the first experiment, involving 64 students, there were four opportunities for contradictions during the discussion of each research study. Because the overall levels of student confusion were quite low, a second experiment, involving 76 students, used a delayed manipulation, where the animated agents initially agreed with each other but eventually started to express divergent views. In this condition, students were sometimes then given a text to read to help them resolve their confusion. It was thought that, given their confusion, students would read the text with particular attention, and so improve their learning.
In both experiments, on those trials which genuinely confused the students, those students who were initially confused by the contradiction between the two agents did significantly better on the test at the end.
A side-note: self-reports of confusion were not very sensitive, and students’ responses to forced-choice questions following the contradictions were more sensitive at inferring confusion. This is a reminder that students are not necessarily good judges of their own confusion!
The idea behind all this is that, when there’s a mismatch between new information and prior knowledge, we have to explore the contradictions more deeply — make an effort to explain the contradictions. Such deeper processing should result in more durable and accessible memory codes.
Such a mismatch can occur in many, quite diverse contexts — not simply in the study situation. For example, unexpected feedback, anomalous events, obstacles to goals, or interruptions of familiar action sequences, all create some sort of mismatch between incoming information and prior knowledge.
However, all instances of confusion aren’t necessarily useful for learning and memory. They need to be relevant to the activity, and of course the individual needs to have the means to resolve the confusion.
As I said, I see a relationship between this idea of the right level and type of confusion enhancing learning, and the idea of desirable difficulty. I’ve talked before about the ‘desirable difficulty’ effect (see, for example, Using 'hard to read' fonts may help you remember more). Both of these ideas, of course, connect to a much older and more fundamental idea: that of levels of processing. The idea that we can process information at varying levels, and that deeper levels of processing improve memory and learning, dates back to a paper written in 1972 by Craik and Lockhart (although it has been developed and modified over the years), and underpins (usually implicitly) much educational thinking.
But it’s not so much this fundamental notion that deeper processing helps memory and learning, and certain desirable difficulties encourage deeper processing, that interests me as much as idea of getting the level right.
Too much confusion is usually counter-productive; too much difficulty the same.
Getting the difficulty level right is something I have talked about in connection with flow. On the face of it, confusion would seem to be counterproductive for achieving flow, and yet ... it rather depends on the level of confusion, don't you think? If the student has clear paths to follow to resolve the confusion, the information flow doesn't need to stop.
This idea also, perhaps, has connections to effective practice principles — specifically, what I call the ‘Just-in-time rule’. This is the principle that the optimal spacing for your retrieval practice depends on you retrieving the information just before you would have forgotten it. (That’s not as occult as it sounds! But I’m not here to discuss that today.)
It seems to me that another way of thinking about this is that you want to find that moment when retrieval of that information is at the ‘right’ level of difficulty — neither too easy, nor too hard.
Successful teaching is about shaping the information flow so that the student experiences it — moment by moment — at the right level of difficulty. This is, of course, impossible in a factory-model classroom, but the mechanics of tailoring the information flow to the individual are now made possible by technology.
But technology isn't the answer on its own. To achieve optimal results, it helps if the individual student is aware that the success of their learning depends on (or will at least be more effective — for some will be successful regardless of the inadequacy of the instruction) managing the information flow. Which means they need to provide honest feedback, they need to be able to monitor their learning and recognize when they have ‘got’ something and when they haven’t, and they need to understand that if one approach to a subject isn’t working for them, then they need to try a different one.
Perhaps this provides a different perspective for some of you. I'd love to hear of any thoughts or experiences teachers and students have had that bear on these issues.
D’Mello, S., Lehman B., Pekrun R., & Graesser A. (Submitted). Confusion can be beneficial for learning. Learning and Instruction.