The thing to remember about Ericsson’s famous expertise research, showing us the vital importance of deliberate practice in making an expert, is that it was challenging the long-dominant view that natural-born talent is all-important. But Gladwell’s popularizing of Ericsson’s “10,000 hours” overstates the case, and of course people are only too keen to believe that any height is achievable if you just work hard enough.
The much more believable story is that, yes, practice is vital — a great deal of the right sort of practice — but we can’t disavow “natural” abilities entirely.
Last year I reported on an experiment in which 57 pianists with a wide range of deliberate practice (from 260 to more than 31,000 hours) were compared on their ability to sight-read. Number of hours of practice did indeed predict much of the difference in performance (nearly half) — but not all. Working memory capacity also had a statistically significant impact on performance, although this impact was much smaller (accounting for only about 7% of the performance difference). Nevertheless, there’s a clear consequence: given two players who have put in the same amount of effective practice, the one with the higher WMC is likely to do better. Why should WMC affect sight-reading? Perhaps by affecting how many notes a player can look ahead as she plays — this is a factor known to affect sight-reading performance.
Interestingly, the effect of working memory capacity was quite independent of practice, and hours of practice apparently had no effect on WMC. Although it’s possible (the study was too small to tell) that a lot of practice at an early age might affect WMC. After all, music training has been shown to increase IQ in children.
So, while practice is certainly the most important factor in developing expertise, other factors, some of them less amenable to training, have a role to play too.
But do general abilities such as WMC or intelligence matter once you’ve put in the requisite hours of good practice? It may be that ability becomes less important once you achieve expertise in a domain.
The question of whether WMC interacts with domain knowledge in this way has been studied by Hambrick and his colleagues in a number of experiments. One study used a memory task in which participants listened to fictitious radio broadcasts of baseball games and tried to remember major events and information about the players. Baseball knowledge had a very strong effect on performance, and WMC had a much smaller effect, but there was no interaction between the two. Similarly, in two poker tasks, in which players had to assess the likelihood of drawing a winning card, and players had to remember hands during a game of poker, both poker knowledge and WMC affected performance, but again there was no interaction between domain knowledge and WMC.
Another study took a different tack. Participants were asked to remember the movements of spaceships flying from planet to planet in the solar system. What they didn’t know was that the spaceships flew in a pattern that matched the way baseball players run around a baseball diamond. They were then given the same task, this time with baseball players running around a diamond. Baseball knowledge only helped performance in the task in which the baseball scenario was explicit — activating baseball knowledge. But activation of domain knowledge had no effect on the influence of WMC.
Although these various studies fail to show an interaction between domain knowledge and WMC, this doesn’t mean that domain knowledge never interacts with basic abilities. The same researchers recently found such an interaction in a geological bedrock mapping task, in which geological structure of a mountainous area had to be inferred. Visuospatial ability predicted performance only at low levels of geological knowledge; geological experts were not affected by their visuospatial abilities. Unfortunately, that study is not yet published, so I don’t know the details. But I assume they mean visuospatial working memory capacity.
It’s possible that general intelligence or WMC are most important during the first stages of skill acquisition (when attention and working memory capacity are so critical), and become far less important once the skill has been mastered.
Similarly, Ericsson has argued that deliberate practice allows performers to circumvent limits on working memory capacity. This is, indeed, related to the point I often make about how to functionally increase your working memory capacity — if you have a great amount of well-organized and readily accessible knowledge on a particular topic, you can effectively expand how much your working memory can hold by keeping a much larger amount of information ‘on standby’ in what has been termed long-term working memory.
Proponents of deliberate practice don’t deny that ‘natural’ abilities have some role, but they restrict it to motivation and general activity levels (plus physical attributes such as height where that is relevant). But surely these would only affect number of hours. Clearly the ability to keep yourself on task, to motivate and discipline yourself, impinges on your ability to keep your practice up. And the general theory makes sense — that if you show some interest in something, such as music or chess, when you’re young, your parents or teachers usually encourage you in that direction; this encouragement and rewards lead you to spend more time and energy in that domain, and if you have enough persistence, enough dedication, then lo and behold, you’ll get better and better. And your parents will say, well, it was obvious from an early age that she was talented that way.
But is it really the case that attributes such as intelligence make no difference? Is it really as simple as “10,000 hours of deliberate practice = expert”? Is it really the case that each hour has the same effect on any one of us?
A survey of 104 chess masters found that, while all the players that became chess masters had practiced at least 3,000 hours, the amount of practice it took to achieve that mastery varied considerably. Although, consistent with the “10,000 hour rule”, average time to achieve mastery was around 11,000 hours, time ranged from 3,016 hours to 23,608 hours. The difference is even more extreme if you only consider individual practice (previous research has pointed to individual practice being of more importance than group practice): a range from 728 hours to 16,120 hours! And some people practiced more than 20,000 hours and still didn't achieve master level.
Moreover, a comparison of titled masters and untitled international players found that the two groups practiced the same amount of hours in the first three years of their serious dedication to chess, and yet there were significant differences in their ratings. Is this because of some subtle difference in the practice, making it less effective? Or is it that some people benefit more from practice?
A comparison of various degrees of expertise in terms of starting age is instructive. While the average age of starting to play seriously was around 18 for players without an international rating, it was around 14 for players with an international rating, and around 11 for masters. But the amount of variability within each group varies considerably. For players without an international rating, the age range within one standard deviation of the mean is over 11 years, but for those with an international rating, FIDE masters, and international masters, the range is only 2-3 years, and for grand masters, the range is less than a year. [These numbers are all approximate, from my eyeball estimates of a bar graph.]
It has been suggested that the younger starting age of chess masters and expert musicians is simply a reflection of the greater amount of practice achieved with a young start. But a contrary suggestion is that there might be other advantages to learning a skill at an early age, reflecting what might be termed a ‘sensitive period’. This study found that the association between skill and starting age was still significant after amount of practice had been taken account of.
Does this have to do with the greater plasticity of young brains? Expertise “grows” brains — in the brain regions involved in that specific domain. Given that younger brains are much more able to create new neurons and new connections, it would hardly be a surprise that it’s easier for them to start building up the dense structures that underlie expertise.
This is surely easier if the young brain is also a young brain that has particular characteristics that are useful for that domain. For music, that might relate to perceptual and motor abilities. In chess, it might have more to do with processing speed, visuospatial ability, and capacious memory.
Several studies have found higher cognitive ability in chess-playing children, but the evidence among adults has been less consistent. This may reflect the growing importance of deliberate practice. (Or perhaps it simply reflects the fact that chess is a difficult skill, for which children, lacking the advantages that longer education and training have given adults, need greater cognitive skills.)
Related to all this, there’s a popular idea that once you get past an IQ of around 120, ‘extra’ IQ really makes no difference. But in a study involving over 2,000 gifted young people, those who scored in the 99.9 percentile on the math SAT at age 13 were eighteen times more likely to go on to earn a doctorate in a STEM discipline (science, technology, engineering, math) compared to those who were only(!) in the 99.1 percentile.
Overall, it seems that while practice can take you a very long way, at the very top, ‘natural’ ability is going to sort the sheep from the goats. And ‘natural’ ability may be most important in the early stages of learning. But what do we mean by ‘natural ability’? Is it simply a matter of unalterable genetics?
Well, palpably not! Because if there’s one thing we now know, it’s that nature and nurture are inextricably entwined. It’s not about genes; it’s about the expression of genes. So let me remind you that aspects of the prenatal, the infant, and the child’s, environment affect that ‘natural’ ability. We know that these environments can affect IQ; the interesting question is what we can do, at each and any of these stages, to improve affect basic processes such as speed of processing, WMC, and inhibitory control. (Although I should say here that I am not a fan of the whole baby-Einstein movement! Nor is there evidence that many of those practices work.)
Bottom line:
- talent still matters
- effective practice is still the most important factor in developing expertise
- individuals vary in how much practice they need
- individual abilities do put limits on what’s achievable (but those limits are probably higher than most people realize).
Campitelli, G., & Gobet F. (2011). Deliberate Practice. Current Directions in Psychological Science. 20(5), 280 - 285.
Campitelli, G., & Gobet, F. (2008). The role of practice in chess: A longitudinal study. Learning and Individual Differences, 18, 446–458.
Gobet, F., & Campitelli, G. (2007). The role of domain-specific practice, handedness and starting age in chess. Developmental Psychology, 43, 159–172.
Hambrick, D. Z., & Meinz, E. J. (2011). Limits on the Predictive Power of Domain-Specific Experience and Knowledge in Skilled Performance. Current Directions in Psychological Science, 20(5), 275 –279. doi:10.1177/0963721411422061
Hambrick, D.Z., & Engle, R.W. (2002). Effects of domain knowledge, working memory capacity and age on cognitive performance: An investigation of the knowledge-is-power hypothesis. Cognitive Psychology, 44, 339–387.
Hambrick, D.Z., Libarkin, J.C., Petcovic, H.L., Baker, K.M., Elkins, J., Callahan, C., et al. (2011). A test of the circumvention-of-limits hypothesis in geological bedrock mapping. Journal of Experimental Psychology: General, Published online Oct 17, 2011.
Hambrick, D.Z., & Oswald, F.L. (2005). Does domain knowledge moderate involvement of working memory capacity in higher level cognition? A test of three models. Journal of Memory and Language, 52, 377–397.
Meinz, E. J., & Hambrick, D. Z. (2010). Deliberate Practice Is Necessary but Not Sufficient to Explain Individual Differences in Piano Sight-Reading Skill. Psychological Science, 21(7), 914–919. doi:10.1177/0956797610373933